
VirtuosoNext: Fine-Grain Space and Time Partitioning
RTOS for Distributed Heterogeneous Systems

Bernhard H.C. Sputh
Altreonic NV

Gemeentestraat 61A bus 1
Linden, Belgium

bernhard.sputh@altreonic.com

Eric Verhulst
Altreonic NV

Gemeentestraat 61A bus 1
Linden, Belgium

eric.verhulst@altreonic.com

ABSTRACT
In this paper we present VirtuosoNext, an RTOS for dis-
tributed heterogeneous systems which provides fine-grain
space and time partitioning. Focusing on the Space Par-
titioning, the benefits and penalties of fine-grain space par-
titioning for real-time systems are presented by comparing
VirtuosoNext to its predecessor OpenComRTOS-1.6. Both
use a static memory model and can be used simultanueously
in a networked system. The comparisons are based on the
ARM-Cortex-M3 (MPU) and ARM-Cortex-A9 (MMU) ports
of the RTOS.

General Terms
RTOS, distributed systems, space partitioning, time par-
tioning

Keywords
RTOS, distributed systems, OpenComRTOS, VirtuosoNext

1. INTRODUCTION
A current trend in embedded systems is the use of hypervi-
sors to allow the execution of multiple applications on the
same processor. Hypervisors provide coarse-grain space and
time partitioning. They provide separate memory spaces as
well as separate time-slots for each application, itself com-
posed of multiple processes or tasks. Thus it prevents the
partitions interfering which each other, but does not con-
trol what happens inside a partition. In comparison Virtu-
osoNext, introduced in this paper, provides fine-grain Task
level space partitioning, which means that individual Tasks
are prevented from accessing the memory region of another
Task. Hypervisors typically provide partitioned time slices
usually in the order of milliseconds or tens of milliseconds. If
an external event for an application arrives outside its time
slice then the handling of this event stays pending until that
application partition becomes active again. In VirtuosoNext
we provide classical preemptive priority based scheduling of
the Tasks instead of strict time partitioning. This means

that external events can be handled when they occur in-
stead of having to wait till their partition is scheduled again.
The time partitioning features of VirtuosoNext are more in-
tended as restrictions on top of the priority based schedul-
ing, for example because safety requirements impose that a
certain task should only run during a given time interval or
should be terminated when it uses its allocated budget in
CPU cycles.

1.1 VirtuosoNext
VirtuosoNext is based on Altreonic NV’s formally developed
and network-centric OpenComRTOS [3]. Like its prede-
cessor VirtuosoNext supports the Virtual Single Processor
(VSP) programming model whereby the RTOS abstracts the
underlying distributed and heterogeneous processor hard-
ware topology from the developer. This allows the developer
to concentrate on the application logic without having to
worry about the communication between the different Pro-
cessing Nodes in the System. Furthermore, this model al-
lows an application to be developed first on a single Process-
ing Node and then distribute the application onto multiple
Processing Nodes, without modifying the application source
code. This is partly achieved by using so-called ”Hubs” to
provide the traditional services (synchronisation and com-
munication between Tasks). Each service is a specific in-
stance of a Hub. Hubs decouple the Tasks whereby Hubs
and Tasks can be mapped anywhere in the system.

VirtuosoNext retained the static memory allocation at com-
pile time that OpenComRTOS-1.6 uses. Static memory al-
location by default avoids running out of memory resources
during runtime by avoiding the dynamic allocation of mem-
ory. This is inherently safer than a dynamic memory allo-
cation programming model and permits the linker to check
at build time whether or not the application will fit in the
available memory resources. Note that VirtuosoNext De-
signer, the modelling and programming environment allows
the user to switch on the protection on a node by node basis
with no impact on his application code.

VirtuosoNext as well as OpenComRTOS provide the follow-
ing services, implemented as instances of a generic ”Hub”.

• Synchronisation and data exchange services provided
by Hubs:

– Port: Facilitates a synchronised exchange of data
between two Tasks, similar to a CSP-Channel.

– Event: Represents a boolean event, which can be
raised and signalled. While it is in the raised state
any further request to raise it is put on the waiting
list of the Hub, if the interaction semantics permit
it (W and WT).

– Semaphore: Represents a counting event, which
can be signalled and tested. This means that it
can be raised multiple times by the same Task un-
til a user defined maximum value has been reached,
upon which any further requests are enqueued on
the waiting list.

– Fifo: Buffered data exhange between Tasks. Works
system wide.

– Memory Block Queue (MBQ): This Hub provides
the ability to exchange blocks of memory between
Tasks. Tasks can allocate these memory-blocks
from the MBQ-Hub and then fill them with the
desired data. The data exchange is a zero copy
operation (on the same Node), as just pointers
to the memory-blocks get exchanged. The size of
the memory blocks is user definable.

– BlackBoard: This is a safe system wide global
data structure. All read and write operations to
this data structure are performed atomically.

– DataEvent: Combines an event with a message.
When the DataEvent gets signalled the signalling
Task can put a message for the Task that tests the
DataEvent. Once the DataEvent has been tested
the message is purged from it. A DataEvent can
be raised multiple times, before being tested, to
update the message stored in it.

– Resource: Represents a lock which provides sys-
tem wide (read: distributed) priority inheritance.

– MemoryPool: The MemoryPool allows a Task to
allocate blocks of memory for local use. This Hub
only works locally, i.e. Task and Hub must ben
on the same Node.

– PacketPool: Allows a Task to allocate additional
L1 Packets to use for asynchronous interactions.
Like the MBQ- and MemoryPool-Hubs this Hub
only works locally.

• Task State Manipulation: VirtuosoNext allows to sus-
pend and resume Tasks. It is not possible to create
a new Task during runtime, as this would violate the
static allocation scheme used by VirtuosoNext. How-
ever, the developer can use a pool of Tasks, created at
compile time.

• Timer Services: Tasks can wait and deschedule for a
time interval, as well as their interactions may time
out (more in the next paragraph).

Interactions can have the following interaction semantics:

• W (Waiting): The Interaction will block until syn-
chronisation is achieved, before returning to the Task
that attempted the interaction. In case the interac-
tion succeeded the return value RC OK is provided.
Should the interaction fail, due to not being permitted
then RC FAIL will be returned immediately.

• WT (Waiting with Timeout): The interaction will
block until either synchronisation is achieved or the
timeout expired, before returning to the Task that at-
tempted the interaction. In case the timeout expired
an interaction will return RC TO to the Task.

• NW (Non Waiting): The interaction will test whether
or not synchronisation has been achieved and then im-
mediately return to the Task that attempted the in-
teraction. In case the interaction failed the the return
value RC FAIL is provided.

• A (Asynchronous): An Asynchronous Interaction is
an Interaction whereby the issuing Task can continue
while the Interaction is being processed. A Task may
have multiple Asynchronous Interactions pending at
the same time. Internally Asynchronous Interactions
are treated like Waiting ones. Once the Task has is-
sued all the Asynchronous requests it has to wait for
them to succeed. This is also why Asynchronous In-
teractions are also called two-phase services. Async-
Services are useful when a Task has to wait for one
of multiple possible choices to happen, for instance for
an interrupt from a hardware device and at the same
time for a request from another Task.

1.2 Space Partitioning
Fine-grain Task level space partitioning compared to pro-
cess or application level space partitioning has the advantage
that it allows a much finer level of partitioning which can
be as small as a single line of code, but typically the func-
tion providing the Task entry point, without jeopardising
the real-time capability, an issue that traditional hypervisor
type approaches have. In process level space partitioning
the data of individual threads of a process are shared, which
means they can corrupt each other’s data. This is not the
case when using the space partitioning support of Virtu-
osoNext, whereby each Task runs in User-Mode and is only
permitted to access its own memory (allocated at compile
time), as well as explicitly shared memory in the form of
global variables. This also prevents direct access to the un-
derlying hardware for which the application Task can call
the trusted services of the underlying RTOS kernel and its
driver layer. As in VirtuosoNext drivers are implemented as
Tasks, the user can also develop them in Supervisor-mode.

With VirtuosoNext the application is now split explicitly
between a trusted and a non-trusted zone. The trusted zone
contains the qualified kernel Task and the driver layers. The
untrusted zone contains the application Tasks that can use
the services provided by the trusted zone. In this case the
kernel Task can be fully trusted as it underwent a qualifica-
tion process.

1.3 Time Partitioning
VirtuosoNext does not provide a classical time partition-
ing implementation as seen in hypervisors, instead like its
predecessor OpenComRTOS it provides system wide (dis-
tributed) priority based preemptive scheduling at all levels.
This means that a high priority request from Task A on Node
1 for a Service provided at Node 23 will be treated every-
where as a high priority request. This means that with the
exception of some memory and scheduling overhead, Virtu-
osoNext provides the responsiveness of a traditional RTOS

(like OpenComRTOS), albeit in a distributed implementa-
tion and classical scheduling theories remain valid. Rather
than allocation fixed and isolating time slots (that put a se-
rious lower boundary on the reaction time of the system),
VirtuosoNext provides support for restricting the scheduling
in time of Tasks on top of the priority based scheduling. For
example, Tasks can be defined with earliest starting time
and latest termination times or with a maximum CPU cy-
cles budget. The kernel Task continuously monitors these
tasks specific boundary conditions. Note however, that such
boundary conditions are often not needed, unless safety re-
quirements impose them.

1.4 Outline
In the following Section ?? we first give an introduction into
VirtuosoNext’s space partitioning concepts. It covers the
implementation differences of space partitioning between an
MPU and an MMU, based on the implementation for an
ARM-Cortex-M3 [2] and an ARM-Cortex-A9 [1]. Besides
the Kernel-level implementation it also includes the support
tools and the build process. The impact of the space parti-
tioning implementation onto the code size and the runtime
behaviour are examined in Section 5, by comparing Virtu-
osoNext to its predecessor OpenComRTOS-1.6. The results
are discussed in Section 6. This is followed by Conclusions
and Further Work in Section 7.

2. IMPLEMENTATION
To perform task-level fine-grain space partitioning the RTOS
requires hardware support, either a Memory Protection Unit
(MPU) or a Memory Management Unit (MMU). These units
allow one to assign access properties to the different memory
regions. Typical properties are:

• Read-Only: The memory region may only be read
from, but not written to. This is used in VirtuosoNext
for all the regions that contain instructions.

• Read-Write: The memory region that can be read from
and written to. This applies to the data region a Task
may access.

• Non-Executable: The memory region that may not
be used to fetch instructions from. If supported by
an MPU/MMU unit then VirtuosoNext utilises this
property for all memory regions that do not contain
instructions.

In VirtuosoNext the following memory regions are defined:

• Shared regions:

– Code-Shared: Contains the instructions for the
whole Node. If possible this region is marked
read-only and kept in the Flash memory of the
SoC.

– Data-Shared: Contains data that is shared among
all Tasks on the Node. For instance, the Packets
of a Packet-Pool-Hub (managed by the trusted
Kernel task).

– BSS-Shared: Contains zero initialised data for all
Tasks of the Node. For instance the trace buffer
when enabled.

• Task specific regions:

– Data-Task-N: Data that is specific to a Task, this
includes, among other things, the Request-Packet,
the Task Context and the Task Control Block.
For the Kernel Task this contains also the defini-
tion of the local Hubs.

– BSS-Task-N: Zero initialised data of the Task,
such as the stack of the Task.

2.1 Privilege levels
VirtuosoNext provides two privilege levels:

• User-Level: A Task at this level may only access its
own private data, the data shared in the Data-Shared
and BSS-Shared regions, and execute the instructions
that are in the Code-Shared region.

• Supervisor-Level: A Task at this level, may access the
whole memory available without any restrictions or
monitoring. This level is used by the Kernel-Task, In-
terrupt Service Routines, and for device drivers which
need to directly interface to their memory mapped
devices. These elements form the trusted zone, and
can only be accessed from User-Level Tasks through
guarded interfaces that ensure that no malicious re-
quest passes through.

2.2 Adjustments to the RTOS Implementation
In order to support memory protection the VirtuosoNext
implementation was changed in the following areas:

• Data Structures: The context of a Task was changed to
contain information about the private memory regions
of the Task, as well as the privilege level of the Task.

• Boot procedure: Configures the shared memory re-
gions in the MPU before enabling the MPU.

• Context switch: The context switch must reconfigure
the MPU with the Task private memory-regions. Fur-
thermore, the context switch must now be executed in
the supervisor mode of the CPU to allow reconfigura-
tion of the MPU / MMU.

• User-Task to Kernel-Task communication had to be
adjusted to allow the User-Task access to the Kernel-
Task interface.

2.3 Illegal Accesses
When a Task tries to access a memory location in a way that
is not permitted the MPU/MMU triggers a CPU-exception.
In VirtuosoNext this results in a transfer to the Task’s Abort-
Handler followed by restarting the Task.

3. IMPLEMENTATION DIFFERENCES BE-
TWEEN MPU AND MMU

The hardware support for memory protection is usually done
by either a Memory Protection Unit (MPU) or an Mem-
ory Management Unit (MMU). VirtuosoNext supports the
ARM-Cortex-M3 MPU as well as the ARM-Cortex-A9 MMU
although this can be ported to other processors as well. This
section details the implementation differences between the
ARM MPU and MMU.

3.1 ARM-Cortex-M3 (MPU)
The MPU of the ARM-Cortex-M3 SoC [2] (also used by
the ARM-Cortex-M4 and the small ARM-Cortex-R4 SoCs)
allows to mark a memory region as RO, RW, and Non-
Executable. This MPU is designed for small systems and
allows to only have up to eight regions for a currently run-
ning Task in parallel. Furthermore, it has strict rules on the
alignment and size of a memory region. A memory region
can only have sizes that are 2n with n ∈ {} with a minimum
size of 4kB and the alignment of the region is the same as
the size of it. Thus the starting address of a 16kB region
must be aligned to 16kB. In addition this MPU allows to
split a memory region into 8 sub-regions, although this was
not used in the implementation.

Due to the previously mentioned constraints it is clear that
this MPU is meant to be used in systems where the developer
manually finetunes the linker script. This is undesirable as
it is an error prone and time intensive process and thus we
decided to automate it. Automation of MPU usage faces
two challenges:

1. Generate a correct linker script to correctly align the
memory regions, for which one needs to know the sizes
of the different memory regions, to properly align them.

2. Determining the sizes of the different memory regions.
Before building an application one does not know the
size of the different memory regions.

VirtuosoNext overcomes these challenges by using an ad-
justed build procedure for ARM-Cortex-M3 Nodes, which
is also applicable to the M4 and some instances of the R4.
The procedure is as follows:

1. Generate all the files for the ARM-Cortex-M3 Node,
and assign the data structures to their corresponding
memory regions. It is important to note that the linker
script generated in this step contains all the necessary
memory regions and stores an integer multiple of their
placement in predefined symbols in the program.

2. Build the Node.

3. Generate a map file for the Node allowing to know the
sizes of the different memory regions.

4. Generate an adjusted linker script that properly aligns
the memory-regions, based on the previously generated
map file. In this step VirtuosoNext uses a new tool
called the SectionAnalyser-Arm-Cortex-M, which cal-
culates the alignment and potential necessary paddings.

5. Build the Node using the adjusted linker script, gen-
erated in the previous step.

The previously outlined build process allows the developer
to utilise the ARM-Cortex-M3 MPU without having to man-
ually configure it. Hence, the memory partitioning and pro-
tection is transparent for the application code itself.

3.2 ARM-Cortex-A9 (MMU)
The ARM-Cortex-A9 MMU [1] is more flexible than the
MPU of the ARM-Cortex-M3. It does not impose a limi-
tation between size of a region and its alignment. It oper-
ates with a granularity of 4kB, which means that a page in
the MMU always has the size of 4kB. However, this comes
not for free, the developer has to provide the MMU with
information about each page a Task is allowed to access, in
the form of a Table. Updating this Table makes the context
switch quite complex and thus expensive in cycles, and re-
sults in a larger memory footprint of the final binary. See
the Results section for detailed figures.

4. TIME PARTITIONING
VirtuosoNext provides a priority based preemptive schedul-
ing model. Each Task in the system has assigned a priority
to it and the scheduler always executes the Task with the
highest priority. This applies global scheduling across all
Tasks and hence all applications. To achieve time partition-
ing in the hypervisor sense this can be achieved by allocat-
ing a range of Priorities to every Partition, and then use
a ticker-timer for each Partition which will raise an Event
when the time-slot for the partition has been reached. Using
this Event the Tasks of the Partition activate and then per-
form their work as if they were scheduled in tim. This model
works single processor as well as in a distributed system,
if low latency links between the different processing Nodes
are used. Typical hypervisor solutions cannot be used in
distributed heterogeneous systems by default, and they are
usually also specific to the used hardware. This is not the
case with VirtuosoNext.

To react to external events on time an Application may regis-
ter Interrupt Service Routines (depending on the used hard-
ware and the device driver). Interrupt Service Routines have
priority over any application Task. Interrupt Service Rou-
tines may interact with Tasks using VirtuosoNext-Hubs us-
ing Non-Waiting Semantics, allowing them to activate Tasks
upon external events and using an Application-Task to han-
dle them. These ISR-Event handling Application Tasks will
be placed in the highest Priority-Group, higher than any
Partition, which allows them to run immediately after an
external event occurred. These Tasks are usually not com-
putation expensive, they might just read some data from a
Device and make some control decisions, write some infor-
mation to it or to another device, or to pass the data to an-
other Application-Task. Thus control is quickly returned to
the active Priority Group. This scheme allows VirtuosoNext
to serve external events as quickly as possible, while at the
same time it permits execution of individual Applications to
happen only in predefined time slots.

VirtuosoNext does not prevent that a partition is not over-
running its preallocated time slot because such a time slot

is virtual. If this is desired the user can however manually
suspend a group of Tasks, to prevent them from getting any
more runtime. However, in most embedded applications a
slight overrunning partition is not a major problem, if it
does not happen continuously. In this case the partition
time slot has been specified too short or it is an indication
of a hardware issue.

Form above, it is clear that a better scheme is to use global
priority based scheduling for all Tasks across all Application
Partitions. Often a Rate Monotonic Analysis will provide
a good starting point to assign the priorities as most appli-
cations tasks are periodic. However, if safety requirements
impose it, Tasks can be specified with restrictions on when
they can start and must terminate and how many cycles
they are allowed to consume per period. This is not time
partitioning in the strict sense of the word but a way to
exercise fine grain control over the execution of application
tasks.

5. RESULTS
5.1 Code Size
The fine-grain space partitioning implementation of Virtu-
osoNext is lightweight both in code size and in runtime
impact. The code size of OpenComRTOS-1.6 (used as a
reference) and the VirtuosoNext implementation was com-
pared by building the same application using all available
Services (compiled with Os). For the ARM-Cortex-M3 plat-
form (TI-LM3S6965 SoC [5]) the code size increased by 2908
bytes to 11564 bytes. For the ARM-Cortex-A9 platform (TI-
OMAP4460 [4]) the code size increased by 6700 bytes to
21844 bytes. The larger increase is due to the more complex
configuration needed for the MMU of the ARM-Cortex-A9
compared to the MPU used by the ARM-Cortex-M3.

5.2 Semaphore Loop Times
Space partitioning also affects runtime performance because
the context of a Task now includes also the information
about the memory regions it is allowed to access. This be-
comes visible when comparing the time the system takes
to perform a Semaphore-Loop (two Tasks, two semaphore
Hubs with one loop requiring eight context switches). For
the ARM-Cortex-M3 (@50MHz) the execution time per loop
has increased from 2730 to 2945 clock cycles (compiled at
O3) and for the ARM-Cortex-A9 (@700MHz) the time in-
creased from 16557 to 21271 clock cycles (compiled at O3).

5.3 Interrupt Handling Latency
In addition to fast context switching a RTOS must also be
able to react predictably and with very low latency to ex-
ternal events, so called Interrupts. In the case of Virtuosos-
Next and OpenComRTOS we define two Interrupt Latencies
of interest. The first one is the Interrupt Request (IRQ) to
ISR (Interrupt Service Routine) Latency, the second is the
IRQ to Task Latency. For the ARM-Cortex-M3 (@50MHz)
the minimal IRQ to ISR Latency increased from 46 to 50
clock cycles (compiled with Os) and the IRQ to Task La-
tency increased from 754 to 850 clock (compiled with Os).
The impact on the ARM-Cortex-A9 (@700MHz) is that the
minimal IRQ to ISR Latency increased from 800 to 850 clock
cycles (compiled with O3) and the IRQ to Task Latency from
1420 to 2465 clock cycles (compiled with O3). Note that the

interrupt latency is really a histogram as it depends on what
other applications are active on the processing node. To sim-
ulate such a stress pattern, the above mentioned semaphore
loop is scheduled in parallel with the interrupt agency mea-
surement. The semaphore loop is a very good stress load
as it continuously disables interrupts for short interval when
the Kernel Task execute the semaphore services and exe-
cutes context switches.

5.4 Virtual Time Partitioning
To illustrate the feasibility of the time partitioning support
of VirtuosoNext we implemented a system, consisting of one
Node (thus a single CPU) that executes three independent
and periodic applications (100ms periodicity): a controller
for a skid steered vehicle (Tasks with the IDs: 2, – 8; and
Hub IDs: 0–3 and 7), a simulation of an inverted pendulum
monocycle (Tasks with the IDs: 9 – 12; Hub IDs: 8 –12), and
a SemaphoreLoop burst (Task IDs: 13, 14; Hub IDs: 13, 14).
Figure 1 is an Event Trace of the application with all Tasks
executing at the same priority. In both cases is the order of
execution first determined by the priority and next by the
partial order imposed by the interactions. Not that in a real
example, the priorities within an Application would also dif-
fer and be determined by their periodicity. An Event Trace
is a recording of the scheduling events and the interactions
with the Hubs, which can be graphically displayed using the
Event Tracer tool provided by VirtuosoNext. In the Event
Trace of Figure 1 all the application Tasks are running at
the same priority of 128, we can see that each application
Task gets scheduled when it is at the top of the ready list.
Furthermore, we see at the end of the trace the scheduling
of the Idle-Task (Task ID: 2), which indicates that currently
there is no Task that is ready. In Figure 2 the three applica-
tions have been scheduled with distinct Priorities, with the
skid steering controller application having the highest Pri-
ority (64), the inverted pendulum having a medium Priority
(128), and the SemaphoreLoop having the lowest Priority
(128). We can see how first the skid steering controller ap-
plication executes first, followed by the inverted pendulum,
which then is followed by the SemaphoreLoop. Furthermore,
we again see at the end of the graph the Idle-Task being
scheduled, followed by the skid steering controller applica-
tion. This illustrates that it is possible to achieve time and
space partitioning using the current priority based preemp-
tive scheduling without loosing much of the reactivity of a
classical RTOS.

Must find the example and get: cycle time and period

length from them, the priorities.

6. DISCUSSION
The results presented in the previous section show that us-
ing an MMU compared to an MPU has a larger impact on
both code size and runtime, without having a general bene-
fit in our standard benchmarks. The code size of the ARM-
Cortex-A9 kernel increased by 33.1% while the code size of
the ARM-Cortex-M3 increased only by 1.9%. From past ex-
perience we know that a larger code size usually results in
slower runtimes, due to code having a lower probability of
not fitting into the instruction cache.

The SemaphoreLoop time on the ARM-Cortex-A9 increased
by 28.5% while for ARM-Cortex-M3 it only increased by

7.9%, this directly reflects the much larger context switch on
the ARM-Cortex-A9 due to the additional code to handle
the MMU compared to the few additional registers for the
MPU of the ARM-Cortex-M3. A very large increase is also
visible for the IRQ to ISR latency which increased by 38%
on the ARM-Cortex-A9, while at the same time there was no
change on the ARM-Cortex-M3. The IRQ to Task latency
increased by 73.6% for the ARM-Cortex-A9, which is almost
three times more than the increase of the SemaphoreLoop
time. For the ARM-Cortex-M3 it only increased by 6.3%
which is less than the increase in the SemaphoreLoop time.
This indicates that there is most likely an issue with code
that handles the MMU inside the interrupt handling code
used by the ARM-Cortex-A9.

7. CONCLUSIONS AND FURTHER WORK
This paper introduced VirtuosoNext with a focus on achiev-
ing fine-grain and time partitioning to preserve the reac-
tivity of a static RTOS and gain the benefits of protec-
tion of on-chip memory protection. Two space partition-
ing implementations were introduced, the MPU approach
as used by the ARM-Cortex-M3, and other MCUs of the
same league, and the MMU approach as used by the ARM-
Cortex-A9 and similar processors. It was shown that both
approaches work very well. The difficulties of utilising them
where highlighted as well as how they have been overcome in
VirtuosoNext. Furthermore, the VirtuososNext implemna-
tion was compared to its predecessor OpenComRTOS-1.6,
on which the development of VirtuosoNext was based. The
comparison was both on code size as well as runtime perfor-
mance, and it showed that an MPU results in a smaller per-
formance impact than an MMU, and that we should take a
look at the ARM-Cortex-A9 implementation to see whether
or not we can optimise it further.

This brings us to the future work. As already mentioned the
ARM-Cortex-A9 implementation can be further optimised.
There is also a potential to improve the ARM-Cortex-M3
MPU handling by using the sub-regions offered as this would
reduce the size of the memory regions we have to protect.
This would require to improve the Section Analyser tool.
Naturally, we also would like to expand our space partition-
ing support also to other CPU families, such as Freescale
PowerPC, Synopsys ARC.

8. ACKNOWLEDGMENTS
The authors would like to thank Antonio Ramos for imple-
menting the MMU support for the ARM-Cortex-A9.

9. REFERENCES
[1] ARM. ARM Cortex-A9 Processor Technical Reference

Manual, revision r4p1 edition, 2012.

[2] ARM. ARM Cortex-M3 Processor Technical Reference
Manual, revision r2p1 edition, 2015.

[3] B. H. Sputh, E. Verhulst, and V. Mezhuyev.
OpenComRTOS: Formally developed RTOS for
Heterogeneous Systems. In Embedded World Conference
2010, Mar. 2010.

[4] Texas Instruments. OMAP4460 Multimedia Device
Silicon Revision 1.x Texas Instruments OMAP Family
of Products Version AB Technical Reference Manual,
2014.

[5] Texas Instruments. Stellaris LM3S6965 Microcontroller,
2014.

Figure 1: Three differrent applications running at the same Priority

Figure 2: Three differrent applications running at distinct Priorities

